CorteXlab: A Facility for Testing Cognitive Radio Networks in a Reproducible Environment

Leonardo S. Cardoso, Abdelbassat Massouri, Benjamin Guillon, Paul Ferrand
Florin Hutu, Guillaume Villemaud, Tanguy Risset, Jean-Marie Gorce
Université de Lyon, INRIA,
INSA-Lyon, CITI-INRIA, F-69621, Villeurbanne, France
Email: leonardo.cardoso@insa-lyon.fr

Abstract—While many theoretical and simulation works have highlighted the potential gains of cognitive radio, several technical issues still need to be evaluated from an experimental point of view. Deploying complex heterogeneous system scenarios is tedious, time consuming and hardly reproducible. To address this problem, we have developed a new experimental facility, called CorteXlab, that allows complex multi-node cognitive radio scenarios to be easily deployed and tested by anyone in the world. Our objective is not to design new software defined radio (SDR) nodes, but rather to provide a comprehensive access to a large set of high performance SDR nodes. The CorteXlab facility offers a 167 m² electromagnetically (EM) shielded room and integrates a set of 24 universal software radio peripherals (USRPs) from National Instruments, 18 PicoSDR nodes from Nutaq and 42 IoT-Lab wireless sensor nodes from Hikob. CorteXlab is built upon the foundations of the SensLAB testbed and is based on the open-source toolkit GNU Radio. Automation in scenario deployment, experiment start, stop and results collection is performed by an experiment controller, called Minus. CorteXlab is in its final stages of development and is already capable of running test scenarios. In this contribution, we show that CorteXlab is able to easily cope with the usual issues faced by other testbeds providing a reproducible experiment environment for CR experimentation.

I. INTRODUCTION

It is widely accepted that cognitive radio (CR) has the potential to promote high spectral efficiencies, through a better re-use of radio resources. However, to be able to realise the complex CR scenarios envisioned for the future, correct usage of software defined radio (SDR) technologies is needed. While many works have shown the potentials of CR, there are still many technical difficulties standing in the way between the idealised and a practical CR usage. Several of such technical issues are easier to be dealt experimentally, rather than from an analytical or simulation point of view. This is especially the case when large scale systems are employed such as distributed/cooperative spectrum sensing [1] and massive MIMO [2].

In the last ten years, experimenting with SDRs has been made possible by the commoditization of radio platforms and the availability software toolkits, such as the universal software radio peripheral (USRP) and GNU Radio, respectively. They have popularised – and even democratised – the experimentation on radio, allowing researchers, engineers and amateurs to build and test radio transceiver technologies, ranging from the most simple (e.g. [3]) to the state-of-the-art in radio communications (e.g. [4]). However, while the deployment of an experimental scenario over a couple of radio nodes is manageable, it becomes a daunting task when many nodes are involved. This becomes especially hard when multiple types of radio nodes, with different capabilities and characteristics integrate a heterogeneous testbed. Indeed, the testbed operator must sequentially connect to each one of the host computers to deploy the code that implements the radio processing, start the experiment and, when finished, collect the results possibly spread over several computers. If any kind of synchronised or timed start procedure is needed, then it becomes impossible for a single operator. Another common issue of traditional testbeds is the lack of reproducibility of experiments. The scientific value of testing and comparing cutting edge radio techniques depends on the ability to reproduce experiments. Unmanaged environments offer unpredictable propagation and interference fluctuations, that are usually disregarded in experimental results. Due to the random nature of both of these impairments, it is very unlikely that the same conditions will be offered when re-executing the experiment, which will probably affect the assessment of the results obtained.

To address all of these issues we introduce CorteXlab [5], a testbed composed of 84 heterogeneous and high performance radio nodes deployed in an electromagnetically isolated room, for cutting edge radio experimentation. With CorteXlab, our main objective is to provide a unified and comprehensive access to a large set of heterogeneous nodes in a reproducible environment, in the aim to foster experimental development of future radio techniques. CorteXlab offers 24 USRPs 2932 from National Instrument, 18 PicoSDRs from Nutaq and 42 IoT-Lab wireless sensor nodes from Hikob. It makes available the full potential of SDR, through the widely accepted GNU Radio toolkit as well as high performance real-time field programable gate array (FPGA) development. The SDR hardware available in CorteXlab ranges from simplistic wireless sensor network (WSN) nodes to full blown 4x4 MIMO SDR nodes with agile radio capabilities. Through a carefully designed backbone network, those radio nodes are capable of cooperating to emulate complex radio technologies such as network multiple input – multiple output (MIMO) [6], interference alignment (IA) [7] and physical layer based relay networks [8].

CorteXlab [5] is developed, along with 8 other testbeds, under the framework of a nationwide French program Future...
Internet of Things (FIT) [9]. FIT aims to develop an experimental facility, a federated and competitive infrastructure with international visibility and a broad panel of users. It will provide this facility with a set of complementary components that enable experimentation on innovative services for academic and industrial users. The project will give a means to experiment on mobile wireless communications at the network and application layers thereby accelerating the design of advanced networking technologies for the future internet. In this work, CorteXlab is introduced, detailing its structure, inner workings and main differences with respect to the currently available testbeds.

The remainder of this paper is organized as follows. In the next section a brief review of the state of the art in experimental testbed for CR is presented. Then, in sections III through VI, a full description of CorteXlab is given. Finally, conclusions and perspectives are drawn in section VIII.

II. STATE OF THE ART OF EXPERIMENTAL TESTBEDS

Large-scale CR testbeds are mandatory to develop and evaluate the performance of upcoming physical (PHY) and medium access control (MAC) layers and future CR techniques. Unfortunately, testing new algorithms on real testbeds is complex and time-consuming. Several research groups already obtained interesting results from their own testbeds, but comparing all results and methods fairly and with a good level of reproducibility.

Whereas numerous testbeds are available for specific wireless network standards (sensor or 802.11-oriented), only a few large-scale testbeds have been developed having full SDR and CR capabilities. Apart from on-going projects such as CREW [10] or TRIAL [11] and some other small testbeds involving less than 10 nodes, we found only two testbeds developed respectively at Rutgers University, Orbit [12] and at Virginia Tech., Cornet [13], where USRPs have been adopted.

The Orbit testbed [14] counts with an impressive number of nodes, a total of 400, dispatched on the ceilings of an experiment room. It also uses a clever scheduling and deployment system, called ORBIT Management Framework (OMF) [15], to manage experiments on those 400 nodes. For CR experiments, however, only 28 nodes are of the USRP kind, since the main focus of Orbit is on higher layer experiments. The remaining nodes implement a fixed 802.11 PHY/MAC layer. A portal website is used to control all user interaction to the platform.

The Cornet testbed, unlike Orbit, was created from the ground up for PHY/MAC layer research and supports CR experimentation. It counts with a total of 48 nodes, distributed over 4 levels of an academic building in the Virginia Tech campus. The USRP radios use a custom developed radio frequency (RF) board which supports several non ISM frequencies. Those frequencies were made available by the federal frequency (RF) board which supports several non ISM frequencies. In spite of the impressive node count and the possibility to transmit freely on non ISM bands, users of Cornet are still faced with a frugal calendar based reservation system and one-by-one access to the nodes, which hinders large scale deployments. Furthermore, since the nodes are on different floors, they have limited radio accessibility to nodes on different floors. Last but not least, after creating a user account anyone can have access to any node at any time, and consequently to the code installed by other users. This intrinsic insecurity can scare security sensitive users away from the platform.

On both cases, the registered users can remotely program and run experiments on the USRPs. Still, the USRPs adopted therein are not the bleeding edge hardware available. In both cases, the cognitive radio nodes are based on an old USRP technology which present some limitations. We remark that both facilities have their nodes deployed in a conventional environment, which means that the system may suffer from external interference while itself may produce interference on any external system.

III. THE CORTEXLAB FACILITY

Using as our starting point the current state of these front line testbeds, we have developed CorteXlab, a new facility for large scale radio experimentation. The main objective of CorteXlab is to enable users to run real-time communications with customized application (APP) (with traffic generation), transport control (TCP), network (NET), MAC and PHY layers, implementing current (WIFI, Zigbee, LTE, LTE-A) and upcoming (5G) standards. Users all over the world will be able to schedule experiments and access CorteXlab through a custom built web portal and a standard secure shell (SSH) remote connection. CorteXlab deploys in a electromagnetically (EM) shielded room a heterogeneous set of nodes, including WSN and SDR nodes. By providing access to different nodes technologies, we broaden the scenario possibilities, hopefully appealing to a larger audience of research and development engineers.

Our testbed is complementary to Cornet and Orbit in the following aspects:

- A shielded experimentation room reinforces the reproducibility and the control of the interference environment;
- Heterogeneous high performance nodes are adopted, fostering agility, flexibility and real-time performance;
- An experimentation control plane, called Minus is introduced to control the execution of the experiment.

Each of these aspects are further detailed in the following.

IV. EXPERIMENTATION ROOM

CorteXlab counts with a completely shielded room to ensure EM isolation with the outside world. This allows the use of any (restricted or open) frequency between 300 MHz and 5 GHz, which might appeal to researchers looking to test specific frequency or standard related techniques. It also improves reproducibility since all sources of interference and channel impairments are confined to the interior of the room. To avoid excessive reflections, EM wave absorbing foams cover
all walls and roof, leaving room from some reflections to occur. A glimpse of the experimentation room, before the installation of the radio platforms can be seen in Figure 1. A measurement campaign has shown an attenuation of more than 80 dB is ensured in the band [1000 MHz-5 GHz] as seen in Figure 2, with at least 60 dB throughout the whole target band. We are well aware that by shielding the room, a risk is taken on producing an unrealistic propagation environment. To properly assess the radio environment with the EM shielding, two approaches are currently under study. In the first approach, an extensive ray-tracing simulation campaign is under way to provide an initial understanding of the expected kind of propagation environment. This campaign will allow (if needed) the subsequent placement of absorbers or reflection surfaces to improve the radio characteristics of the room. The second approach consists on running a campaign of channel measurements to properly assess the effectiveness of the changes made in the first step, as well as to provide real channel measurements to our future users. The experimentation room will also count with several network-connected sensors, such as humidity and temperature for external monitoring of the conditions and traceability of any relevant changes to the environment. Finally, cameras will also be installed in the room to diminish human intervention to a minimum.

V. RADIO PLATFORMS

As previously stated, we chose a mix of three types of nodes in the CorteXlab: low power WSN nodes, general-purpose SDR nodes and real-time high performance SDR nodes.

A. WSN platforms

The WSN nodes are powered by a Cortex A8 processor and count with an off-the-shelf CC2420 802.15.4 radio interface operating at 2.4 GHz, built by a start-up called Hikob. These nodes embed a complete Linux environment and can be programmed to implement different MAC, NET and TCP layers. They will be used to test techniques such as low consumption routing for internet of things and distributed calculation for wireless sensor networks. They can also be used as medium sensing nodes (in the ISM band) that cooperate with SDR nodes to form an intelligent distributed spectrum sensing tier.

B. General purpose SDR platforms

Represented by the National Instruments USRP 2932, the general-purpose SDR nodes will use (but are not limited to) the GNU Radio toolkit for rapid prototyping of transmission techniques mostly reliant on the general purpose processor (GPP) of the host PC. The USRP 2932 is a high end radio platform, counting with a 400 MHz – 4.4 GHz RF board, bandwidth of up to 40 MHz (with reduced dynamic range, nominal band of 20 MHz), a precise OCXO clock source and a 1 gigabit ethernet (GigE) connection to the host PC. The host PC is based on a Linux environment and will allow users to test not only PHY layer techniques, but also MAC, NET, TRA and APP, by deploying custom kernel modules that can coexist with the stock implementations easily.

Both the use of Linux and GNU Radio will facilitate the development and test at the user’s own computer before bringing the experiment over to CorteXlab. Furthermore, the GNU Radio and Linux communities have progressed a lot in the last decade, offering good and free support to users as well as a multitude of open and accessible examples, that can be downloaded off the internet and used without additional charges.

C. High performance SDR platforms

The high end SDR nodes, are composed by the Nutaq PicoSDR radio platforms. In CorteXlab they will come in two flavors: 2x2 and 4x4 MIMO. The 2x2 PicoSDRs possess two Radio420x mezzanine cards on top of a Perseus board, that counts with a powerful Virtex6 FPGA. It will connect to the host PC through a GigE. The 4x4 MIMO PicoSDRs possess four Radio420x mezzanine cards and two Virtex6 FPGAs. It can connect to the host PC through either a GigE or a 4x PCI express (PCIe), the latter offering high bandwidth for full
MIMO operation. All Radio420x can tune in the 300 MHz to 3.8 GHz range and can step up to 28 MHz in bandwidth. As with the USRP case, the host PCs are Linux based and will allow users to test PHY and above layers via custom kernel modules.

Initially, two programming modes will be supported by the PicoSDRs:

- **GNU Radio**: this method will work more or less the same way as it does for the USRPs, with the added possibility of 2x2 and 4x4 MIMO. In this mode the user will be able to choose either a passthrough FPGA design, giving direct access to the radio interface, or any one of our custom PHY layer intellectual properties (IPs), including OFDM and 802.14.5. GNU Radio blocks interfacing to either of these FPGA IPs will be available.

- **Board software development kit (BSDK)**: this is the typical Nutaq method for programming the PicoSDRs and consists of part VHDL FPGA and part C code. It brings full flexibility, allowing a user to bring his own IP to the PicoSDR FPGAs, through ready made bitstreams that will be flashed to the FPGA at the beginning of the experiment. The C code, in the form of a Linux executable, will interface to the FPGA inputs and outputs through a readily available driver that uses either the GigE or PCIe interfaces, and can contain not only PHY layer signal processing but also MAC and above implementations. We know that this method is more challenging than the simple GNU Radio one, and thus we will offer the possibility to use one of our custom PHY IPs (OFDM and 802.14.5) as a starting point. It should be noted that, to use the BSDK method, users will have to own a license of the Xilinx development suite.

Finally, every SDR node is co-located with a single WSN node. They are laid out in the experimentation room in an uniform pattern, as shown in Figure 3, where the node positions (marked with a small “+” symbol) are shown in the floor plan of the room. The nodes are attached to the ceiling and are given a 1.8 m clearance is between them.

VI. EXPERIMENTATION CONTROL PLANE

In order to promote the automated control of all nodes during an experiment, an experimentation control plane was created, called *Minus*. It, allows for the scheduling, deployment, start, finish and results collection of user experiments. Each experiment is organized as a *Minus task*, and contains:

- **Scenario description**: a textual file with the list of nodes, their roles and their parameters;
- **Scenario roles**: the actual firmware, GNU Radio Python scripts, pre-compiled libraries, pre-compiled C code and FPGA bitstreams that define the node behavior during the experiment;
- **Role parameters**: the configuration values that refine the behavior of each role.

To better understand the task organization, let's consider the following spectrum sensing example. Suppose the user wants to create a cooperative spectrum sensing system with two tiers. He chooses a set of USRPs to be small cell base stations (SCBSs), which he further divides into those operating at frequency f_1 with band b_1 (first tier) and those operating at frequency f_2 with band b_2 (second tier). Then he selects another set of USRPs to be user equipments (UEs) that switch automatically between tiers, (f_1, b_1) and (f_2, b_2), according to the estimated probability of missed detection. In this case, there are only two roles: SCBSs and UEs which can be defined by two GNU Radio scripts, say “scbs.py” and “ue.py”. There are also only two parameter sets: “-f1 2.412G -W1 1M” and “-f2 2.490G -W2 2M” for each tier involved.

Minus is divided into a server and a client side. At the server side, based on the scenario description file, *Minus* is able to turn on the related nodes, transfer the task files, start the experiment simultaneously on all nodes (or with a pre-determined delay between them), capture the end of the task, turn nodes off and collect results. The results are later on copied to a predefined disk space accessible only by the concerned user. Along with the results, standard output and standard error files are generated to aid the user in finding problems in the task execution if any.

The *Minus* client side is composed of a set of command line executables that enable the user to create a task file, submit a task, query the server status of the server and abort a task. The
user can access to the client side of Minus through a special machine, called “Airlock” responsible for hosting all userside services. Finally, through Minus, no direct user access is allowed on the nodes themselves, guaranteeing the security and longevity of the testbed as a whole. Even in the case of node issues, Minus provides a remotely operated reinstall, to restore the node normal operation.

VII. SYSTEM ARCHITECTURE

To support Minus, a complex network infrastructure was built. To enforce security, all networking is divided into virtual LANs and filtered through firewalls. A services server hosts all virtualized core services, including Minus. A storage server automatically backs up all important data to avoid loss in case of failure.

The CorteXlab network architecture is shown in Figure 4. All SDR nodes possess two network interfaces. The management interface (black connections) is hidden from the user and allows Minus to control the nodes, whereas the data interface is open to the user, and allows communication between nodes. The latter interface can be used to implement cooperative schemes, where nodes can exchange information. These interfaces can also be used to allow one node to control several others, for example in a distributed MIMO approach.

VIII. CONCLUSION

Cognitive radio is a paradigm that refers to dynamic radio resource sharing among heterogeneous wireless systems. It is clearly expected to play a fundamental role in a near future, allowing coexistence of multiple radios in a unique frequency band. Cognitive radio will only unlock the high spectral efficiencies foreseen if software defined radio technologies are correctly exploited. In this paper we have introduced CorteXlab, a facility for experimentation with cognitive radio at the PHY layer. At the best of our knowledge, CorteXlab is the first facility offered to the research community allowing to remotely test cognitive radio scenarios in a completely reproducible environment. Compared to existing facilities, CorteXlab provides three important new features: coexistence of heterogeneous technologies, a shielded room and the automatic scenario deployment, through Minus. Last but not least, the co-existence of simple low power wireless sensor networks nodes together with complex software radio nodes will open the door to new original and complex scenarios. In the final stages of its development, CorteXlab is currently open only to restricted partners.

ACKNOWLEDGMENT

This work is funded by the project FIT (Future Internet of Things) from the program ‘équipement d’excellence’ of the French government.

REFERENCES